Hubble Space Telescope and the Accelerating Universe


Hubble Space Telescope


Hubble Space Telescope and the Accelerating Universe


Orbiting high above the turbulence of the earth’s atmosphere, the Hubble Space Telescope (HST) is providing breathtaking views of astronomical objects never before seen in such detail.  The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies of 30th stellar magnitude.  Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13 billion year old universe.  Up until recently, cosmologists assumed that all of the laws of physics and astronomy applied back then as they do today.  Now, using the discovery that certain supernovae are “standard candles”, astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion.


Hubble's Deepest-Ever View of the Universe Unveils Myriad Galaxies Back to the Beginning of Time


Einstein published the general theory of relativity in 1916. It describes the nature of gravity in large-scale systems such as planets, stars and nebulae.  In the decades around 1910, the universe was thought to be static.  As part of the development of general relativity, Einstein invented the “cosmological constant”, a negative energy to balance gravity (a form of positive energy) and keep the universe from collapsing.  In 1927, Edwin Hubble and Vesto Slipher discovered that the spiral nebulae were receding from each other with velocities proportional to their mutual distances.  Einstein thought he no longer needed the cosmological constant and called it “… the greatest blunder of my life”.  The universe was expanding so fast it might never slow down.


In recent years, a major breakthrough has been made in the field of cosmology.  Using HST and ground-based images, astronomers and physicists have discovered a new means for measuring the distances to faint galaxies.  Using the light from exploding stars called supernovae of type Ia, observers can measure distances by comparing their known intrinsic brightness to their apparent brightness’s.  At maximum light, these supernovae are as bright as the sum of all the stars in their parent galaxies combined.  This means that Ia supernovae can be seen very far away – out in space and back in time to when the first galaxies were formed. This has led to the hypothesis that the universe is accelerating.

 Pillars of Creation in a Star-Forming Region (Gas Pillars in M16 - Eagle Nebula)Hubble Sees Supersonic Exhaust from NebulaHubble Finds Mysterious Ring Structure around Supernova 1987A


In comparison with distances derived from Doppler shifts in their spectra, supernovae distances in faint young galaxies show that the universe was expanding more slowly (in fact decelerating) than it does today.  The simplest hypothesis is that because of the Big Bang, the mean density of the universe is decreasing rapidly with time while the cosmological constant (also known as dark energy) is there, unchanging, throughout space.  Today, dark energy has command of the universe.


It appears that Einstein was right after all.  Now watch a black hole eating a galaxy (click here)


H. John Wood

NASA/GSFC, Code 551

Greenbelt, MD 20771

Phone: 301-286-6314

FAX: 301-286-6063





H. John Wood

Brief Biography




Dr. H. John Wood is an astronomer and serves as an optical engineer for the Optics Branch at NASA’s Goddard Space Flight Center. Since June 1990, he has been Optics Lead Engineer on the Hubble Space Telescope (HST) Project. He led the team that successfully determined the optical prescription of HST while on orbit. He then led NASA's effort to develop and test the corrective optics for HST. In addition to his work on Hubble, he currently serves as Science Liaison in the Instrument Synthesis & Analysis Laboratory for new Earth Science and Space Science instrument engineering design at Goddard.

A graduate of
Swarthmore College, Dr. Wood earned the M.A. and Ph.D. in Astronomy from Indiana University. He has been at Goddard Space Flight Center for 20 years. In addition to the Hubble Project, he has been Lead Optical Engineer on other Goddard projects: the Mars Observer Laser Altimeter and the Diffuse Infrared Background Experiment aboard the Cosmic Background Explorer (COBE). Earlier he was assistant to the director at Cerro Tololo Interamerican Observatory (Chile) for two years. He held a Fulbright Research Fellowship for two years at the University Observatory in Vienna, Austria. He also served five years as a staff astronomer at the European Southern Observatory in Chile. His career began with six years on the astronomy faculty of the University of Virginia at Charlottesville.

Winner of the 1992 NASA exceptional service medal and the 1994 NASA exceptional achievement medal for his work on COBE and HST, he is the author of 50 research papers in astronomy and space optics. He was invited by the Optical Society of America to edit special editions of Applied Optics and Optics and Photonics News on the HST first servicing mission. He was co-chair of the HST Independent Optical Review Panel that was charged with the determination of the optical parameters for the HST while on orbit.